Effects of duration of a simulated winter thaw on dieback and xylem conductivity of Betula papyrifera.
نویسندگان
چکیده
Stems or roots + stems of potted, 2-year-old paper birch (Betula papyrifera L.) were subjected to simulated winter thaws of various durations in climate-controlled chambers. The simulated thaws induced dieback of shoots of the treated plants. Although the stem thaw treatment did not significantly increase dieback, there were significant (P < 0.05) correlations between growing degree days above 4 degrees C and both shoot dieback and percent reduction in conductive xylem. All trees that received > 60 growing degree days (GDD) > 4 degrees C died back to some extent. Plants in the root + stem thaw treatment that received more than 60 GDD > 4 degrees C showed a significant (P < 0.05) increase in dieback and a significant (P < 0.05) loss of conducting xylem after a period of growth and recovery in the greenhouse, especially in the xylem of 1-year-old stems. Furthermore, higher correlations between GDD > 4 degrees C during a thaw and both the extent of dieback and the loss in conductive xylem were found in trees subjected to the root + stem thaw treatments than in trees exposed only to the stem thaw treatments (P < 0.05). The root + stem thaw treatments also resulted in highly significant relationships (P < 0.05-0.001) between loss in conductive xylem and dieback. The occurrence of dieback in response to winter thaws, and its close correlation with irreversible losses of xylem conductivity due to embolisms, coupled with an inability to refill the xylem because of root damage, support the view that these processes may be key factors in initiating birch decline.
منابع مشابه
Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species.
Vulnerability to xylem embolism by freeze-thaw cycles and water stress was quantified in ring-porous (Quercus gambelii Nutt.), diffuse-porous (Populus tremuloides Michx., Betula occidentalis Hook.), and conifer species (Abies lasiocarpa Nutt., Juniperus scopulorum Sarg.). Embolism was measured by its reduction of xylem hydraulic conductivity; it was induced by xylem tension (water-stress respon...
متن کاملWinter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees.
Xylem vessels of Prunus persica Batsch (peach) and Juglans regia L. (walnut) are vulnerable to frost-induced embolism. In peach, xylem embolism increased progressively over the winter, reaching a maximum of 85% loss of hydraulic conductivity (PLC) in early March. Over winter, PLC in walnut approached 100%, but the degree of xylem embolism varied during the winter, reflecting the ability of waln...
متن کاملXylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens.
Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, ...
متن کاملA requirement for sucrose in xylem sap flow from dormant maple trees.
The response of excised stem segments of several tree species to freezing and thawing cycles was studied. All species studied (Thuja occidentalis, Fagus grandifolia, and Betula papyrifera) except maple (Acer spp.) exuded sap while freezing and absorbed on thawing. Maple stems absorbed sap while freezing and exuded sap during the thaw only when sucrose was present in the vessel solution. Increas...
متن کاملUptake of water via branches helps timberline conifers refill embolized xylem in late winter.
Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 17 6 شماره
صفحات -
تاریخ انتشار 1997